Establishing a Jetting Baseline
Regardless of whether your sled is bone stock or you have
added some accessories, one of the most important pieces of information
you need for consistent peak performance is to establish is a jetting
baseline. This is when you fine-tune and jet your carburetors
for a specific set of conditions. Once you determine a baseline for
your exact intake/engine/exhaust combination, you can use the data to
properly calibrate your jetting for whatever conditions you may ride
in. This procedure is especially valuable for unique combinations that
deviate from the factory supplied jetting charts.
You will of course want to start with the jetting recommendations supplied
by the manufacturer for your exact model. Normally, your sled will be
jetted for conditions colder than what youre likely riding in
to maintain a safety margin. If you have added aftermarket
accessories, follow the recommendations supplied by that vendor. If
they do not supply any suggestions, always err on the rich side.
While more precise tuning can be performed using exhaust gas temperature
gauges, you can perform very accurate tuning by simply analyzing the
spark plugs and the piston wash. Many tuners will simply learn to read
spark plugs, as this is clearly the quickest and easiest method.
At the time of your testing, air temperature and elevation, at a minimum,
are required to determine your baseline specification. Better yet, what
youre really interested in is Relative Air Density, a reading
that is a combination of air temperature and barometric pressure. You
can determine the proper jetting for your sled at a given temperature
and elevation, but if this was performed when a low pressure air mass
was present, you could be too lean at that same elevation and temperature
if a high pressure air mass passes through. A higher barometric pressure
means that the air is denser, and there will be more molecules of oxygen
entering your engine, thus a leaner fuel/air mixture.
An air density guage can bepurchased from most leading performance shops. (Part #725-160 for $129.95 from Hi-Performance Engineering at 218-681-2390 or (800) 451-5268
Make sure your machine is good and warmed up by running it for a while
before beginning any calibrations. You want to safely operate the machine
at wide-open throttle for at least 1/4 mile on a flat, well packed surface.
While at full throttle, shut off the ignition before releasing the throttle.
When the sled comes safely to a stop, examine the spark plug color,
piston domes, and even the exhaust manifold to determine if the mixture
is rich. Because of the differences in engine designs and hundreds of
performance products available for these engines, you may want to contact
a dealer or performance company that is familiar with your engine combination
and talk to them about any specifics you should be aware of when reading
your plugs and pistons.
Generally, if the spark plug insulator (white porcelain surrounding
the center firing electrode) is dark brown or black, the mixture is
too rich. Hopefully you are familiar with the desired color youre
looking for; it could best be described as the color of cardboard, a
light to medium brown. Very light brown, gray or white is too lean!
Another valuable indicator on the spark plug is the center firing electrode;
as the plug color starts to lighten up when properly jetted, the center
firing electrode will start to have a silver tip, or crown.
As the mixture becomes leaner, this silver crown will start to creep
down the side of the electrode; this is your target. This metallic appearance
on the end of the electrode should not extend any further than 1/4 -
1/3 of the way down the tip. Many tuners are happy with the margin afforded
by simply seeing the silver tip; then theyre close enough for
trail riding with a bit of margin to spare.
The ground electrode is also an indicator; on many engines you will
see a shadow (darker area) just up to the radius (bend)
that will usually coincide with the color and firing electrode appearance.
If this shadow is further down the ground strap towards the plug threads,
youre likely too lean. If this dark shadow is all the way across
the strap to the center of the plug, youre too rich.
Use all three of these plug indicators; try not to rely on only one.
Color is likely the easiest and most widely used, but looking for the
metallic crown on the tip of the firing electrode is a very accurate
indicator on most engines; just dont ignore the other indicators.
When experienced, many tuners can recognize a properly jetted sled simply
by listening to the tone of the engine. They always verify their instincts,
but they can get really close before they perform final fine-tuning.
(This same procedure can be used to tune the needle position, but you
would want to maintain a 1/2 throttle position for a 1/4 to 1/2 mile,
again hitting the kill switch before releasing the throttle. This distance
will ensure that the color you are seeing is caused by the carb fuel
circuit that is responsible for that throttle position.)
It is best to reduce main jet sizes very cautiously and carefully to
avoid piston and cylinder damage. If you are way off, reducing the main
jet two sizes at a time may be acceptable, but once you start to get
close, only reduce the mains one size at a time. When the engine performance
is clean and the spark plugs reach your desired state of tune, record
your environmental conditions. Again, at a minimum, record the temperature
and elevation. Better yet, the Relative Air Density (if you have access
to a gauge).
Now you have established a baseline. Anytime the elevation and /or temperature
(air density) changes, you can compute the changes needed to your main
jets to maintain a similar state of tune. There are several mathematical
systems available to properly determine the required change, so well
cover some of them.
Relative Air Density
This is going to be your more accurate method. The higher the state
of tune your machine is in, the more seriously you should consider this
method. Lets say that when you get your engine running cleanly
and the plugs are looking right, you were using 360 mains and recorded
the air density at 80%. Next weekend you find the air density to be
88%. You know you have to jet up, but how much?
Divide the new air density by the old air density,
then multiply this factor times the old jet size. This would
be 88 (new density) divided by 80 (old density) which is 1.1; multiply
this times your old jet size (360) and you get 396. Rounded up (5 and
over round up) to the next jet size, you will need to install 400 mains
to maintain your fuel/air ratio. Its that easy.
Temperature/Elevation
The majority of tuners will simply rely on air temperature and elevation,
and for stock machines this method is tried and true. If you know the
main jet size that was right on the money for a given elevation and
air temperature, you can use Jetting Correction Charts to
mathematically determine what changes will be required to maintain your
state of tune.
Arctic Cat uses a Temperature/Barometric Pressure Chart,
Ski-Doo references a Carburetor Main Jet Correction Chart,
both of which can be found in their respective Racing or Performance
manuals.
Holtzman Engineering has generated a set of Jetting Factor Charts
which are extremely valuable. These charts provide a jet factor
for different altitudes and temperatures. This factor can
be applied to any jet size at any given altitude and temperature to
arrive at the correct jet at any other set of conditions. This factor
includes the affects of the pilot and needle jet on the overall total
fuel delivery.
JETTING FACTOR vs.
ALTITUDE AND TEMPERATURE
MIKUNI HEX JETS
MIKUNI ROUND AND KEIHIN HEX JETS
Once again, an example might help. Lets say we have a Mikuni hex
main jet installed of size 300 and the sled runs well at an altitude
of 8000 feet and 20 degrees F. What size jet would we need for
an altitude of 3000 feet and +20 degrees F? The Mikuni hex jet factor
for the first set of conditions is 0.79; that for the second set of
conditions is 0.85. The formula is very similar to the Relative Air
Density formula; new jet factor divided by old jet
factor multiplied by the old jet size equals new
jet size. The new jet size therefore is 0.85 (new jet factor)
divided by 0.79 (old jet factor) times 300 (old jet size) equals 322
(new jet size), so we would use a size of 320 to maintain a similar
fuel/air ratio.
If the carburetor had been a Keihin with a hex jet size of 160 at 8000
feet and -20F, what size jet would get us to 3000 feet and +20F? The
jet factor for the first set of conditions is read from the graph on
the right above and is 0.89; the factor for the second set of conditions
is 0.92. The new diameter numbered jet size is therefore 0.92/0.89 *
160 = 165.
Needles are usually moved one clip for approximately every 20% change
in Mikuni hex jet size or every 10% change in diameter numbered jet
size (Mikuni round jet or Keihin hex jet). For temperatures or elevation
in between these charts, it is fairly straight-forward to determine
the proper jet factor. The jet factor for a Mikuni hex jet at a temperature
of 10 at an elevation would be between 0.85 and 0.83; that would
be 0.84.
Holtzman has also developed jetting charts that display required jetting
reduction as a percentage for use with their Tempa-Flow and Vari-Flow
float-bowl pressure regulator compensators that are capable of changing
the effective jet size; a combination of the needle jet, main jet and
pilot jet. These devices compensate all the way down to 1/4 throttle
by changing the pressure across the jets, a very effective method of
broad-band jetting correction very similar to the method used by the
Ski-Doo DPM system.
Many engines with broad fuel curves (like most Yamahas) will not make
any more power as you jet down from a certain point, and basically make
the same power across a three-four jet size spread. Another consideration
is that an engine under heavy load will require more fuel; riding after
a wet, heavy snowfall will require more fuel for otherwise identical
conditions than a flat, hard surface. Your engine will also run cooler
and safer if you error slightly on the rich side. Error on the lean
side and you could find yourself walking home or hitching a ride.
Once you have properly jetted your sled once and know the conditions,
you can use that information to determine the proper jetting for just
about any different condition you may ride in. You can also use these
formulas to determine how much of a safety margin you may have for a
given set-up; if you know what jetting really makes er sing at
0 degrees, you can easily figure out how far you have to jet up to be
sure you are safe down to 30, or whatever! Use this knowledge
to be your fastest when needed (competition), and to give yourself some
margin when you need it (longevity). Remember to always check your specific
set-up with piston, plug, and/or EGT readings, and start out on the
rich side and work your way down.
Snowmobile Jetting Procedure
by Allen Roberts, Starting Line Products
One of the best field jetting procedures comes from Allen
Roberts, a leading calibration technician with Starting Line Products
in Idaho Falls, Idaho. Starting Line Products provides very detailed
calibrations specifications with their performance products, due in
part to the testing procedures.
Before performing a jetting calibration, the fuel system must
be inspected for cleanliness and the carburetors should be checked for
proper float height setting. Another very important item is carburetor
synchronization. If the carburetors are not properly synchronized, the
throttle response will be very poor and this can plug fouling. I prefer
to use the Uni-sync carb synchronization tool (available
through SLP for $36.08, part #20-81). Using the Uni-sync, adjust the
idle screws to synchronize the carburetors at idle. Loosen carb cable
adjustment to ensure slides are bottoming on idle screws. Then check
that the throttle slides are moving from the idle screws at the same
time when the throttle is opened. If throttle slides are not opening
together, lengthen or shorten the cable adjustment at the top of the
carburetors.
The low speed tuning (idle to 1/4 throttle setting) is calibrated by
pilot jet changes and adjusting the air screw. Operate the throttle
between idle and 1/4 and see if the engine revolutions increase smoothly.
If the pilot jet circuit is too lean, increase in the engine speed will
be slow and irregular. If the pilot jet circuit is too rich this would
create heavy exhaust smoke as well as a dull exhaust noise. If you cannot
maintain speed in this 1/4 throttle area while the throttle is held
constant, the pilot jet circuit is too lean.
To find a good starting point on the air screw, warn up the engine to
operating temperature and adjust the air screw in (richer) or out (leaner)
until the idle RPM is at its highest point (do not open more than three
turns). One point to watch on air screw adjustment, if the engine idle
to 1/4 throttle performs best with the air screw adjusted 1/4 turn or
less it may be an indication that the pilot jet is too lean and the
opposite holds true if the air screw ends up near three turns the pilot
jet may be too rich. Its easier to adjust the airscrew than to
change pilot jets to find out if you are too rich or lean on the pilot
circuit.
The mid-range tuning (1/4 to 3/4 throttle) is calibrated by the needle
jet and jet needle. The jet needle tapers off at one end and the clearance
between the needle and the needle jet increases as the throttle valve
opening gets wider allowing more fuel in to the carburetor venturi.
The air-fuel mixture ratio is controlled by the height of needle positioning
clip that is inserted into one of the five slots provided in the head
of the needle. The top slot #1 is full lean; the #5 slot is full rich.
The needle jet is changeable in most Mikuni carburetors. The fuel delivery
can be adjusted by changing to a larger or smaller inside diameter,
the size designation will have a letter followed by a number example,
P-2. The number shows the inside diameter size in increments of .010
mm. Example, the difference between P-2 and P-4 is that the inside diameter
of P-4 is .010 mm larger than P-2. The letter shows the inside diameter
size in increments of .050 mm, the difference between P-2 and Q-2 is
that the inside diameter of Q-2 is .050 mm larger than P-2. So a larger
diameter needle jet will allow more fuel to pass or a richer mixture.
Dialing in the pilot circuit can normally be accomplished by listening,
seeing and feeling what the sled is doing, but above 1/4 throttle the
horse power and engine loading is increasing rapidly and the chances
of engine damage because of improper jetting increase as well. So it
becomes necessary to start reading plug and piston color. The best way
to get a valid piston/plug reading is to hold the throttle steady at
what ever throttle setting you want to check and run at that setting
for at least 1/4 mile if possible, kill the engine before releasing
the throttle.
A couple of tips on mid-range jetting, start out conservative, it is
easier and less expensive to change jets than a seized piston. Use the
jet needle for changing fuel requirements first; its faster to
change the "E" clip position than to change the needle jet.
If you find yourself at full lean or rich and still needing more or
less fuel that is the time to change needle jets. A rule of thumb here
is one "E" clip position on the needle is equal to one needle
jet size. So if your needle jet is a P-4 and the needle "E"
clip position is #1 you could change the needle jet to a P-2 and move
the needle clip to #2 and the fuel flow would be real close to the same
as the P-4 and #1 clip position.
The tuning procedures for the main jet are the same as the mid-range
except the throttle range will be 3/4 to full and of course you will
be changing the main jet not the needle jet or needle.
After you have completed jet testing and are happy with the results,
you would record the air density (or temperature, barometer and elevation)
for that day. This will be your base air density and base
jetting. When the weather and/or elevation (air density) changes
use the Relative Air Density formula or a jetting correction chart to
determine the proper jetting change.
Starting Line Products can be reached at 208-529-0244 or on the web
at www.startinglineproducts.com. They specialize in designing, manufacturing
and calibrating performance products for snowmobiles.
Reprinted with permission from SnowTech Magazine.
|